Facts about Trigonometric Substitution	Explanation
How is Trigonometric Substitution Used?	Trigonometric Substitution (Trig. Sub.) helps simplify a radical or an expression. It is useful if the integrand contains a sum or a difference of squares, often under a radical.
Expression Trig. Sub. Identity $\sqrt{a^{2}-x^{2}} \quad x=a \sin (\theta) \quad \sin ^{2}(\theta)+\cos ^{2}(\theta)=1$	A summary of trigonometric substitutions in which the expression considered, trigonometric substitution used, and pythagorean identity applied are in the left column, middle column, and right column respectively.
$\sqrt{x^{2}+a^{2}} \quad x=\operatorname{atan}(\theta) \quad \tan ^{2}(\theta)+1=\sec ^{2}(\theta)$	
Review of the Relationship between Trigonometric Functions and Right Triangles	$\begin{aligned} & \sin (\theta)=\frac{\text { opposite side }}{\text { hypotenuse }} \\ & \csc (\theta)=\frac{\text { hypotenuse }}{\text { opposite side }} \\ & \cos (\theta)=\frac{\text { adjacent side }}{\text { hypotenuse }} \\ & \sec (\theta)=\frac{\text { hypotenuse }}{\text { adjacent side }} \\ & \tan (\theta)=\frac{\text { opposite side }}{\text { adjacent side }} \\ & \cot (\theta)=\frac{\text { adjacent side }}{\text { opposite side }} \end{aligned}$

1. We will be applying Trigonometric Substitution in order to evaluate $\int \frac{1}{\sqrt{1-x^{2}}} d x$ through the following parts.
(a) Determine the appropriate Trigonometric Substitution to use out of the following: $x=\operatorname{asin}(\theta), x=\operatorname{atan}(\theta)$, or $x=\operatorname{asec}(\theta)$. Afterwards, compute $d x$.

Solution:

$$
x=(1) \sin (\theta)=\sin (\theta) \quad d x=\cos (\theta) d \theta
$$

(b) Substitute x and $d x$ and simplify as much as possible, using trigonometric identities to get rid of the square root.

Solution:

$$
\begin{aligned}
\int \frac{1}{\sqrt{1-x^{2}}} d x & =\int \frac{\cos (\theta)}{\sqrt{1-\sin ^{2}(\theta)}} d \theta \\
& =\int \frac{\cos (\theta)}{\sqrt{\cos ^{2}(\theta)}} d \theta \\
& =\int d \theta+C=\theta+C
\end{aligned}
$$

(c) Evaluate the integral and change your answer back in terms of x. Could you have evaluated your integral in an easier way?

Solution:

Since $x=\sin (\theta) \Leftrightarrow \arcsin (x)=\theta, \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (x)+C$. We can simply have evaluated this by noting that $\frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}$.
2. We will be applying Trigonometric Substitution in order to evaluate $\int \frac{1}{\sqrt{4+x^{2}}} d x$ through the following parts.
(a) Determine the appropriate Trigonometric Substitution to use out of the following: $x=\operatorname{asin}(\theta), x=\operatorname{atan}(\theta)$, or $x=\operatorname{asec}(\theta)$. Afterwards, compute $d x$.

Solution:

$$
x=2 \tan (\theta) \quad d x=2 \sec ^{2}(\theta) d \theta
$$

(b) Substitute x and $d x$ and simplify as much as possible, using trigonometric identities to get rid of the square root. Note that $\int \sec (\theta) d \theta=\ln |\sec (\theta)+\tan (\theta)|+\mathrm{C}$.

Solution:

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} d x & =\int \frac{2 \sec ^{2}(\theta)}{\sqrt{4+4 \tan ^{2}(\theta)}} d \theta \\
& =\int \frac{2 \sec ^{2}(\theta)}{\sqrt{4} \sqrt{1+\tan ^{2}(\theta)}} d \theta \\
& =\int \frac{\sec ^{2}(\theta)}{\sqrt{\sec ^{2}(\theta)}} d \theta \\
& =\int \frac{\sec ^{2}(\theta)}{\sec (\theta)} d \theta \\
& =\int \sec (\theta) d \theta \\
& =\ln |\sec (\theta)+\tan (\theta)|+C
\end{aligned}
$$

(c) Evaluate the integral and change your answer back in terms of x. This may require the use of a right triangle.

Solution:

First note that $\tan (\theta)=\frac{x}{2}$.

$$
\int \frac{1}{\sqrt{4+x^{2}}}=\ln |\sec (\theta)+\tan (\theta)|+C=\ln \left|\frac{2}{\sqrt{x^{2}+4}}+\frac{x}{2}\right|+C
$$

3. We will be applying Trigonometric Substitution in order to evaluate $\int \frac{\sqrt{x^{2}-3}}{x} d x$ through the following parts.
(a) Determine the appropriate Trigonometric Substitution to use out of the following: $x=\operatorname{asin}(\theta), x=\operatorname{atan}(\theta)$, or $x=\operatorname{asec}(\theta)$. Afterwards, compute $d x$.

Solution:

$$
x=\sqrt{3} \sec (\theta) \quad d x=\sqrt{3} \sec (\theta) \tan (\theta) d \theta
$$

(b) Substitute x and $d x$ and simplify as much as possible, using trigonometric identities to get rid of the square root.

Solution:

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-3}}{x} d x & =\int \frac{\sqrt{3 \sec ^{2}(\theta)-3}}{\sqrt{3} \sec (\theta)} \sqrt{3} \sec (\theta) \tan (\theta) d \theta \\
& =\int \sqrt{3} \sqrt{\sec ^{2}(\theta)+1} \tan (\theta) d \theta \\
& =\int \sqrt{3} \tan ^{2}(\theta) d \theta \\
& =\int \sqrt{3}\left(\sec ^{2}(\theta)-1\right) d \theta \\
& =\sqrt{3} \tan (\theta)-\sqrt{3} \theta+C
\end{aligned}
$$

(c) Evaluate the integral and change your answer back in terms of x. This may require the use of a right triangle.

Solution:

First note that $\sec (\theta)=\frac{x}{\sqrt{3}}$.

$$
\begin{aligned}
\sqrt{x^{2}-3} \\
\begin{aligned}
& \sqrt{x^{2}-3} \\
& x=\sqrt{3} \tan (\theta)-\sqrt{3} \theta+C \\
&=\sqrt{3} \frac{\sqrt{x^{2}-3}}{\sqrt{3}}-\sqrt{3} \sec ^{-1}\left(\frac{x}{\sqrt{3}}\right)+C \\
&=\sqrt{x^{2}-3}-\sqrt{3} \sec ^{-1}\left(\frac{x}{\sqrt{3}}\right)+C
\end{aligned}
\end{aligned}
$$

